Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): A case report.

Stephanie Romero Ulloa*, Hamilton Abad Gualpa1, Juan Carlos Ruiz Cabezas3, Mario Leone Pignataro1, Fuad Huaman Garaicoa3

Abstract

Introduction: In recent decades, there has been an increase in the incidence of differentiated thyroid cancer, especially microcarcinomas, whose behavior is usually indolent, with overdiagnosis and unnecessary exhausting therapies with tremendous economic implications.

Objective: To describe a thyroid neoplasm with low malignant potential whose treatment is purely surgical and conduct a bibliographic review.

Clinical case: A 36-year-old male underwent surgery for a thyroid nodule classified as Bethesda VI, where the postsurgical histopathology showed a noninvasive follicular thyroid neoplasm with papillary-type nuclear characteristics (NIFTP). The evolution was favorable; he did not need the substitution of levothyroxine or radioactive iodine.

Discussion: Noninvasive follicular variants of PTC have a meager malignant potential, so the ATA classified it as a low-risk neoplasm whose treatment is purely surgical, changing its name to NIFTP.

Conclusion: NIFTP has an excellent prognosis, and hemithyroidectomy is sufficient in most cases.

Keywords:

MESH: Thyroid Cancer; Papillary; Thyroidectomy; Thyroid Nodule; Case Reports.
Introduction
The follicular variant of papillary thyroid cancer (PTC) is probably the most common [1, 2]. According to the 2017 World Health Organization (WHO) endocrine tumor classification, the follicular variant is subtyped as infiltrating or encapsulated [3]. Before the WHO-2017 sort, the encapsulated follicular variant without evidence of vascular invasion was considered the non-invasive variant [4, 5]; it is now known that this variant has a shallow malignant potential, which is why it was renamed noninvasive follicular thyroid neoplasia with papillary nuclear features (NIFTP) [6].

On the other hand, there has been an increase in the incidence of differentiated thyroid cancer in the last decade, especially papillary thyroid microcarcinoma, which is a papillary carcinoma less than or equal to one centimeter in size with a good prognosis and in which metastases and deaths are exceptional [7]. It is essential to differentiate between these two entities since NIFTP requires surgical treatment, and microcarcinoma must be treated conventionally. A case with complete diagnostic analysis is presented: cytology, pathology, and molecular study.

Clinical case
He is a 36-year-old man with no personal medical or surgical history and no history of exposure to ionizing radiation or drug use. In his family history, he mentions that his father had colon cancer. The patient manifested ten days of evolution of a painless cervical mass, for which he sought medical help (Figure 1).

![Figure 1. Disease evolution timeline in accordance with the CARE guidelines.](image-url)
Neck ultrasound revealed the following characteristics: nodule in the left thyroid lobe, markedly hypoechoic, solid, with regular borders, 31 x 23 mm. Color Doppler showed increased central and peripheral vascularization. The ultrasound study was cataloged as TIRADS 4 (Figure 2) for which he suggested fine-needle aspiration (FNA).

![Figure 2. Thyroid ultrasound. Left thyroid nodule (31 x 23 mm), with increased vascularization.](image)

Laboratory studies showed thyroid-stimulating hormone (TSH): 2.50 µIU/ml, T4: 8.19 ug/dl, thyroglobulin (TGB): 454.40 ng/ml. The cytopathological study reported findings corresponding to Bethesda category VI (positive for malignancy). Likely CPT (Figure 3).

![Figure 3. FNA. Cytopathological study. Papanicolaou and H&E stain (spread and block): Colloid material including thyroid follicular cells with nuclear changes consistent with loose chromatin, nuclear membrane reinforcement, and clefts, distributed sparsely and in small three-dimensional groups or flaps. Multinucleated giant cells are evident. Few lymphocytes and some neutrophils accompany.](image)
Due to the size, ultrasound characteristics, and cytopathological findings, a left isthmolobectomy was performed. Within the intraoperative study of the piece, a solid encapsulated nodule of 28 x 27 x 17 mm was observed, with a frozen diagnosis of a follicular neoplasm, deferred for a comprehensive study of the capsule. No lymphadenopathy was found.

In the deferred evaluation of the specimen, a follicular cell neoplasm is described, with nuclear characteristics of a papillary carcinoma type and growth in a follicular pattern. No signs of capsular or vascular invasion were observed, for which an NIFTP was diagnosed (Figure 4). A molecular biology study was requested for the BRAF and KRAS genes, resulting in both wild-types (native) genes.

Evolution
The patient evolved favorably after surgery did not need levothyroxine substitution, and did not receive radioactive iodine. During the controls carried out, the patient recovered without complications.

Discussion
The exposed clinical case represents a complete diagnostic analysis, with cytological, pathological, and molecular studies, which confer the diagnosis of NIFTP. His surgical intervention was conservative, without the need for other treatments, with a favorable evolution. Supported by the current clinical evidence of the low malignant potential of these entities, only annual postsurgical controls were recommended.

Follicular variant PTC is the most prevalent, recognized by its composition of neoplastic follicles instead of papillae but maintaining conventional papillary nuclear characteristics.
In the past, this variant was subdivided into infiltrative, encapsulated with invasion, and encapsulated noninvasively. In 2015, Nikiforov reported that the latter had a low risk of adverse outcomes and recurrence during follow-up, similar to follicular adenomas (FA) \[8\]; therefore, the ATA classified it as a low-risk neoplasm. Due to its shallow malignant potential, the term cancer was removed from its definition, changing its name to "noninvasive follicular thyroid neoplasm with papillary nuclear features," or NIFTP.

The distinction between NIFTPs and CPTs cannot be made reliably on cytological preparations due to the low risk of malignancy demonstrated for all categories of the Bethesda system, except the "nondiagnostic" type \[9\]. Being the postoperative anatomopathological study necessary for the diagnosis by evaluating a complete specimen.

Histological features of NIFTPs

Major Criteria

- Encapsulation or clear demarcation.
- No vascular or tumor capsule invasion.
- Follicular growth pattern with less than 1% papillae.
- Whether there are solid, trabecular, or insular patterns, the total must be less than 30% of the tumor volume.
- No bodies of psammoma.
- Core characteristics of CPT in NIFTPs (Table 1); the score must be 2 or 3.

Table 1. Nuclear Characteristics of Papillary Thyroid Carcinoma.

<table>
<thead>
<tr>
<th>Size and shape</th>
<th>nuclear enlargement</th>
<th>Overlap</th>
<th>Crowding</th>
<th>Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregularities of the nuclear membrane</td>
<td>irregular contours</td>
<td>Grooves</td>
<td>Pseudoinclusions</td>
<td></td>
</tr>
<tr>
<td>Characteristics of chromatin</td>
<td>Rinsed with margin</td>
<td>glassy nuclei</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To qualify for NIFTP, core characteristics from at least two of the three categories must be expressed at a meaningful level.

Minor Criteria:

- Dark colloid.
- Irregularly shaped follicle.
- "Spray sign."
- Follicles cleft by stroma.
- Giant multinucleated cells within the follicles.

Regarding molecular analyses, the most frequent mutations in NIFTP cases are RAS activating mutations and, less frequently, BRAF mutations \[11, 12\].

BRAF, TERT, RET/PTC, and RAS mutations are strongly associated with thyroid cancer. Thus, the risk of malignancy with a BRAF mutation approaches 100%, while the risk of malignancy with RAS mutations ranges from 40 to 72 additional % \[13, 14\]. Therefore, NIFTP is not
expected to display molecular alterations associated with classic PTC, such as BRAF V600E mutations.

Most patients with a pattern interpreted as suspicious or malignant on cytology require thyroid surgery. The choice of lobectomy versus total thyroidectomy will depend on the size of the tumor, among other reasons concerning each patient.

Under current ATA guidelines, NIFTP treatment is exclusively surgical and does not require radioactive iodine ablation. Thyroxine treatment is given if necessary, and monitoring is based on the occasional determination of tumor markers and cervical ultrasound to detect recurrence [15, 16].

Conclusions

Although there is growing evidence that follicular encapsulated variant PTC behaves very indolently, most patients are still treated as if they had conventional thyroid cancer. Therefore, in this case, we seek to emphasize the importance of distinguishing between these entities, excluding the stigma of a “cancer” diagnosis and reducing the morbidity and high costs associated with unnecessary aggressive treatment.

Abbreviations

PCT: Papillary thyroid cancer.

Administrative information

Additional Files
The authors declare none.

Acknowledgments
Does not apply.

Author contributions
Stephanie Romero Ulloa: conceptualization, validation, visualization, methodology, project management, writing, proofreading and editing, data curation, formal analysis, fundraising, research, resources, software, writing -original draft.

Hamilton Abad Gualpa: conceptualization, validation, visualization, methodology, project management, writing, review and editing, data curation, formal analysis.

Juan Carlos Ruiz Cabezas: conceptualization, formal analysis, acquisition of funds, research, resources, software, writing -original draft.

Mario Leone Pignataro: conceptualization, validation, visualization, methodology, project management, writing, review and editing, data curation, formal analysis.

Fuad Huamán Garaicoa: conceptualization, validation, visualization, methodology, project management, writing, review and editing, data curation, formal analysis.

All authors read and approved the final version of the manuscript.

Editor's note
Revista Oncología Ecu remains neutral with respect to jurisdictional claims on published maps and institutional affiliations.
Financing
The authors financed the expenses incurred in this investigation.

Availability of data and materials
Data availability is available upon request to the corresponding author. No other materials were reported.

Statements

Ethics committee approval
Does not apply.

Consent to publication
Consent for publication was obtained from the patient.

Conflicts of interest
The authors declare that they have no conflicts of competence or interest.

Author Information
Stephanie Romero Ulloa. Place of Work: National Cancer Institute “Dr. Juan Tanca Marengo. SOLCA, Guayaquil – Ecuador. Biographical data: Medical degree from the University of Guayaquil, Ecuador. She is currently in the third year of Medical Residency in Postgraduate Internal Medicine at SOLCA Guayaquil. e-mail: stephanie.romero.ulloa@gmail.com ORCID https://orcid.org/0000-0001-6186-0475

Hamilton AbbotGualpa. Place of Work: National Oncology Institute “Dr. Juan Tanca Marengo. SOLCA, Guayaquil – Ecuador. Biographical data: Doctor of Medicine from the State University of Belgorod in Russia, Specialist in Endocrinology from the State Medical Academy of Voronezh “Burdenko” in Russia.

Juan Carlos RuizHeads. Place of Work: National Oncology Institute “Dr. Juan Tanca Marengo. SOLCA, Guayaquil – Ecuador. Biographical data: Doctor of Medicine and Surgery from the Santiago de Guayaquil Catholic University, Specialist in Molecular Biology from Guayaquil ORCID: https://orcid.org/0000-0003-2425-8754

Mario Leone Pignataro. Place of Work: National Oncology Institute “Dr. Juan Tanca Marengo. SOLCA, Guayaquil – Ecuador. Biographical data: Doctor of Medicine and Surgery from the University of Guayaquil, Specialist in Oncological Surgery ORCID https://orcid.org/0000-0002-1640-948X

References

